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The natural convection from a heated circular cylinder in an unbounded region of 
porous medium is investigated for the full range of Rayleigh numbers. A t  small 
Rayleigh numbers a qualitative solution is obtained and at large Rayleigh numbers 
the second-order boundary-layer solution is found that takes into account the 
first-order plume solution. In  order to find the solution at finite Rayleigh numbers 
the two governing coupled, nonlinear, elliptic partial differential equations are 
expressed in finite-difference form using a specialized technique which is second-order 
accurate everywhere. Further, methods are devised which deal with the plume and 
infinity boundary conditions. Although numerical results are presented for Rayleigh 
numbers up to 400 solutions of the finite-difference equations can be obtained for 
higher values of the Rayleigh numbers but in these cases the mesh size used is too 
large to adequately deal with the developing boundary-layer on the cylinder and the 
plume. 

The numerical results show how the theories at  both low and high Rayleigh 
numbers are approached. The plume solution which develops with increasing 
Rayleigh number agrees with that predicted by the theory presented using the 
boundary-layer approximation. No separation of the flow at the top of the cylin- 
der is found and there are no indications that it will appear at higher values of 
the Rayleigh number. The results presented here give reasonable agreement with the 
existing experimental results for Rayleigh numbers of order unity. However as 
the Rayleigh number increases to order lo2 there is a large discrepancy between the 
theoretical and experimental results and this is because at these higher values of the 
Rayleigh number the Darcy approximation has been violated in the experimental 
results. This indicates the severe limitations of some of the existing theories which 
use boundary-layer analyses and the Darcy approximation for flows in a porous 
medium. The application of Darcy’s law requires that the size of the pores be much 
smaller than the scale of the bulk flow and inertial and thermal lengthscales. 

1. Introduction 
The study of isothermal flow through a porous medium dates back to the work 

of Darcy (1856) who performed his well-known experiments on flow through a sand 
column and he postulated what has now become known as Darcy’s law. Since this 
pioneering work the theory has been applied to  a number of disciplines including 
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groundwater hydrology, soil mechanics, petroleum reservoir engineering, chemical 
process engineering. 

The early theoretical work on heat transfer in a porous medium was focused on 
the onset of natural convection and cellular convection in rectangular enclosures with 
heating from below. However, recently there has been an increasing interest in the 
natural convection in a porous medium external to heated surfaces and bodies. In  
many papers it has been assumed that the Rayleigh number is large and therefore 
the boundary-layer approximations have been employed. Usually similarity solutions 
have been obtained in these situations for two-dimensional and axisymmetric bodies, 
see Merkin (1979). Further higher-order boundary-layer theories have been developed 
in order to assess the accuracy of the boundary-layer approximation but these 
analyses have been restricted to only very simple planar geometries, see for example 
Cheng & Hsu (1984). Very few papers have investigated the situation when the 
Rayleigh number is small but Yamamoto (1974) did obtain an asymptotic solution 
for small values of the Grashof number for the natural convection about a heated 
sphere in a porous medium. However, his solution has the defect that the pressure 
does not remain bounded at large distances from the sphere. Caltagirone (1976) 
investigated the natural convection in a porous medium which is bounded by two 
concentric horizontal cylinders, whilst Burns & Tien (1979) also considered flow 
between concentric spheres. The governing equations were solved at finite Rayleigh 
numbers by the uae of a finite-difference scheme, whilst for small Rayleigh numbers 
a regular perturbation analysis was presented in which the stream function and 
temperature are expanded in a power series of the Rayleigh number. An increasing 
number of experimental investigations are now being performed in different geome- 
tries and for a wide range of Rayleigh numbers and some of these have been reviewed 
by Cheng (1985) and Nield (1985). 

In recent years several analytical studies have been performed for the steady 
two-dimensional natural convection about an infinitely long horizontal isothermal 
cylinder embedded in a porous medium of infinite extent, the cylinder being 
maintained at  a temperature T, and the surroundings at T,. In most of these studies 
it has been assumed that Darcy’s law holds and the boundary-layer equations are 
appropriate. A curvilinear orthogonal coordinate system has been employed and the 
gravitational force normal to the heated surface assumed negligible. Under these 
assumptions Hardee (1976) used an integral method and predicted that the Nusselt 
number N u  varied with the Darcy-modified Rayleigh number Ra as 

N u  = 0.465Ra4, 

where Ra = Kg/3p, D(T,-TT,)/@a). Here K is the permeability, g the gravitational 
constant, /3 the coefficient of volumetric expansion of the fluid, D the diameter of the 
cylinder, a the effective diffusivity and /.L the dynamic viscosity of the fluid. 

Using a similarity method, Merkin (1979) obtained solutions for the natural 
convection porous boundary layers adjacent to axisymmetric and two-dimensional 
bodies of arbitrary shape. For the particular case of a horizontal isothermal circular 
cylinder one obtains 

N u  = 0.565Rak 

In  order to test these theories, Fand, Steinberger & Cheng (1986) performed an 
experimental investigation of heat transfer by natural convection from a horizontal 
circular cylinder embedded in a porous medium which consists of randomly packed 
glass spheres saturated by either water or silicone oil. They showed that the overall 



Natural convection about a horizontal cylinder in a porous medium 159 

range of the Rayleigh number can be divided into two subregions, called ‘low’ and 
‘high ’, in each of which the Nusselt number behaves differently. It was demonstrated 
that the low-Ra region corresponds to Darcy flow. However in the high-Ra region 
the flow is non-Darcian and the flow model of Forchheimer (1901) is appropriate. In 
the limiting case of very high Rayleigh number in which the boundary-layer 
equations may be assumed to hold Ingham (1987) modified the theory of Merkin 
(1979) in order to deal with the non-Darcian effects. He found that 

Nu K Rd(z) VD 

where x is the Forchheimer coefficient. This shows that the Nusselt number is 
proportional to the Rayleigh number raised to the power a for non-Darcy flow whereas 
it is to  the 4 power for Darcy flow. 

In this paper the natural convection about a heated horizontal cylinder in a porous 
medium is investigated under the assumption of the flow being governed by Darcy ’8 

law. Theoretical results are obtained for small and large values of the Rayleigh 
number and the limiting solutions matched by employing a numerical technique for 
moderate values of the Rayleigh number. When employing the numerical technique 
there is no difficulty in extending the work to include for example non-Darcy flow, 
boundary effects, thermal dispersion, etc. However, the main aim of the present paper 
is to produce a complete picture for Darcian flow only. 

When the Rayleigh number is very small there does not exist a simple analytical 
solution corresponding to Ra = 0. This contrasts with the problem of a sphere, rather 
than a cylinder, where Yamamoto (1974) was able to obtain an asymptotic solution 
for small values of Rayleigh number. The problem encountered in this paper is 
analogous to that experienced by Mahony (1957) when considering the heat transfer 
from an isothermal horizontal cylinder at small values of the Grashof number. 

A t  large values of the Rayleigh number the boundary-layer approximation can be 
made and the flow in the vicinity of the cylinder is that predicted by Merkin (1979). 
However a wake develops above the cylinder and this can be modelled at large 
distances as a plume above a horizontal line source of heat. When dealing with the 
second-order boundary layer on the cylinder, the outer flow solution must first be 
determined. In  order to perform this calculation the first-order flow in both the 
boundary layer and the plume has to be determined. This has been performed and 
the second-order boundary-layer solution on the cylinder determined. 

The numerical method presented here is based on the use of specialized techniques 
to obtain an approximating set of finite-difference equations to the full partial 
differential equations which govern the flow. The origins of the method date back 
to Allen & Southwell (1955), Dennis (1960, 1973), Roscoe (1975, 1976) and Spalding 
(1972). Unfortunately, these methods involve exponential coefficients and the 
associated matrices are not always diagonally dominant. However i t  is possible to 
expand these exponential functions in a series and hence both of these difficulties can 
be removed while still maintaining second-order accuracy following the method of 
Dennis & Hudson (1978) and Dennis, Ingham & Cook (1979). The resulting 
finite-difference equations may then be solved using standard iterative techniques. 
Results have been obtained for several mesh sizes and ha extrapolation employed. 

Solving unbounded problems using finite-difference and finite-element techniques 
has always been difficult because of the implementation of the appropriate boundary 
conditions at infinity. For steady flow past a circular cylinder, Fornberg (1980) has 
performed a thorough investigation of the possible boundary conditions at infinity 
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and postulated conditions that he believes lead to the most accurate solutions. 
However for this problem the vorticity tends to zero and the stream function to a 
bounded value. Kuehn & Goldstein (1980) when solving the full Navier-Stokes 
equations for laminar convection about a horizontal isothermal circular cylinder 
treats the infinity boundary condition in two parts - one with the fluid coming into 
the solution domain, the other with the fluid leaving. The fluid is assumed to approach 
the cylinder radially at ambient fluid temperature whilst it is assumed that it leaves 
radially in the plume with negligible radial temperature gradient. They state that 
the position at which the outer boundary condition has been applied has an effect 
on the results if it is not set far enough from the surface of the cylinder and this 
distance was varied from one to twenty diameters. Apart from that in applying the 
outer boundary condition at a finite distance from the cylinder one of the major 
difficulties in obtaining an accurate solution is the existence of the plume. Although 
within the plume the temperature decays inversely with distance from the centre of 
the cylinder to the power t ,  the stream function increases with this distance to the 
power t. It is this unboundedness in the stream function at large distances that makes 
it so difficult in this problem to obtain accurate results at large values of the Grashof 
number. A similar phenomenon exists in the problem under consideration here and 
a method is developed in order to eliminate this difficulty. 

Numerical results are presented in this paper for values of the Rayleigh number 
in the range to 400 and in all cases h2 extrapolation is used. For Ra of order 
unity the numerical results are in reasonable agreement with the experimental results 
of Fand et al. (1986). At very small values of the Rayleigh number it is very difficult 
to obtain accurate solutions, whereas the asymptotic solution for small values of the 
Rayleigh number is only valid for -log Ra % 1 .  At large values of the Rayleigh 
number the numerical results tend to the boundary-layer solution but disagree with 
the experimental results of Fand et al. (1986). However at large values of the Rayleigh 
number the experimental results correspond to large values of the local Reynolds 
number and hence the Darcy approximation will no longer be valid. 

The numerical results show evidence of the development of the plume in which the 
fluid near the cylinder moves towards the top of the cylinder and is expelled in a radial 
jet. This phenomenon has been observed experimentally by Cheng (1985). In  the 
present calculations the plume region is found to narrow with increasing Rayleigh 
number with a corresponding increase of the radial component of velocity. As the 
Rayleigh number increases it is shown that the plume solution is approached. 

Recently there has been a great deal of interest shown in situations where two 
streams of fluid, emanating from two distinct regions, meet and then proceed in a 
single flow. In  the case of a heated horizontal circular cylinder in a porous medium 
the two boundary layers grow from the lowest generator and collide at the uppermost 
generator. For the problem of a sphere rotating with constant angular velocity in 
a fluid otherwise at rest, the boundary layers grow from the poles and collide at the 
equator. Nigam (1954) proposed a solution in which the boundary layers were empty 
of fluid at  the equator, but Banks (1965) and Stewartson (1958) showed that this 
situation was not possible. Banks (1976) also attempted an inviscid theory as 
proposed by Stewartson (1958) but concluded that the interaction at the equator was 
a viscous problem. Smith & Duck (1977) postulated that there is a large (compared 
with the boundary-layer thickness) recirculating region near the equator. In the range 
of Rayleigh numbers considered here, there is no evidence that the collision of the 
boundary layers at the top of the cylinder gives rise to a recirculating region. 
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2. Equations 
We investigate the steady-state natural convection about a heated horizontal 

circular cylinder of radius a embedded in an unlimited mass of uniform porous 
medium with constant permeability K. The temperature of the cylinder is T, and that 
of the ambient medium is T,. The porous medium is assumed to be an effective 
continuum and this is generally valid for systems where the non-dimensional pore 
space, the square of which is qualitatively represented by the Darcy number, 
K/(radial distance between inner and outer boundaries)2, is much less than unity. 
Darcy’s law then adequately describes the transfer of momentum provided that the 
Reynolds number based on the pore diameter is less than about unity, see Musket 
(1946), Scheidegger (1974), Beavers & Sparrow (1969) and Fand et al. (1986), so that 
inertial effects are negligible. It is further assumed that the convective fluid and 
porous medium are in local thermal equilibrium, the properties of the fluid and porous 
medium are constant and isotropic, the Boussinesq approximation is applicable and 
the thermal dispersion is negligible. The convective flow is assumed to be moving 
upwards while gravity acts vertically downwards. We take cylindrical polar coordi- 
nates with the axis of the cylinder a t  r’ = 0 and 6 = 0 as the downward vertical and 
assume all quantities are independent of 2’. 

The governing equations can be written in dimensionless form, see Yih (1965), 

v - v  = 0,  (1) 

= -Vp-Tk, (2) 

1 
Ra 

v’VT = -V2T, (3) 

where (g/3(T,-TT,)poK/,u) v is the velocity vector, (agp(T,-T,)p, K/,U)P is the 
pressure, T, + (T, - T,) T is the temperature. Coordinates are non-dimensionalized by 
using a as the lengthscale, k = (cosd, -sin 8, 0) is a unit vector in the direction of 
gravity and Ra = gp(T,-T,)po K a / ( p a )  is the Rayleigh number. Here ,u is the 
dynamic viscosity of the fluid, po the density of the convective fluid, a the effective 
thermal diffusivity, p the coefficient of volumetric expansion of the fluid and g the 
acceleration due to gravity. 

Introducing the stream function in order to satisfy (l) ,  eliminating the pressure 
from (2) and writing the resulting equation in cylindrical polar coordinates leads to 

where 

If the symmetry condition at 0 = n is enforced then (4) and (5) have to be solved 
subject to the boundary conditions 

$ = O ,  T = l  o n r = l ,  O<O<n, ( 7 4  
u,v,T+O as r+m, 0 < 8 < z, (7b)  

aT 
$ = - = O  ae onO=O,n, 1 G r e w .  ( 7 4  
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In order to perform calculations in a finite domain, rather than an infinite one where 
the location of the outer boundary condition needs careful adjustment, we employ 
the transformation 1 

X = - .  r (8) 

Unfortunately this transformation leads to the stream function becoming infinite at 
X = 0 since although u and w might tend to zero as r - t  co, i.e. X - t  0, this does not 
imply that the stream function likewise tends to zero. In the plume that rises above 
the cylinder Wooding (1963) has produced the solution for the dimensional stream 
function J and temperature T as follows: 

( 9 4  $ = a(Ra&B tanh (+I?$), 

( 9 4  

and B = ($. 0 is the prescribed heat flux per unit length, c p  is the specific heat of 
the convective fluid at constant pressure, 5? and are the coordinates dong and 
normal to the plume respectively, and Ra, = K g p  4 x/u2pcp. 

From (9a,  b) we conclude that within the plume 

where f = (Ra,)a; I!7 

2 

T - r 6 ,  $ - &  asr+co (10) 

and clearly these will represent the least rapid decays in these quantities for all values 
of 8. This leads us to write 

or 

so that F - X ,  T - X  asX-tO ( 1 l b )  
and therefore the infinity boundary condition is easy to implement. 

Substitution of the transformations (8) and ( 1 1 )  into (4) and ( 5 )  gives 

and boundary conditions (7) become 

I F = O ,  G = I ,  x = i ,  o ~ e ~ x ,  
F ,  G-t 0, x+o, o < e G x ,  

aG 
F = - = O  on0=O,x ,  O < X G  1. ae 

3. SmalERayleigh-number solution 
For small values of the Rayleigh number, a solution of (4) and ( 5 )  maybe attempted 

by expanding the dependent variables in a series in powers, or fractional powers, of 
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the Rayleigh number. For the first approximation to the temperature distribution, 
this leads to the conduction equation 

with the boundary conditions 
v q  = 0, (15) 

T, = 1 on r = 1, all 8, 

T,+o asr+co, all8, 

- 0  f o r r 2  1, 8=O,x.  
aT _-  
ae 

It is clear that (15) does not possess a solution that satisfies the boundary conditions 
(16). This problem was encountered by both Mahony (1957) and Fendell (1968) when 
considering the natural convection about an isothermally heated sphere at small 
Grashof numbers in a non-porous medium. 

The solution of (15) that is valid in the vicinity of the cylinder and hence satisfies 
the boundary condition on the cylinder and a heat transfer rate corresponding to a 
Nusselt number Nu is 

Mahony (1957) in his study noted the futility of obtaining an exact solution for the 
outer region and we also came to the same conclusion for this problem. Instead a 
patching procedure will be followed. We seek a similarity solution of the governing 
equations by assuming the existence of a vertical plume and patch the temperature 
of the plume with that of the inner thermal field at a particular point along the x-axis. 

T, = 1-Nu ln(r ) .  (1’1) 

It is found that within the plume 

4 = x-Bj’(y), T = x+#(c), = X ~ Y ,  (18) 

f”‘ = Rag, g’+lf”- 3 9 -  - 0, (19) 

where 4 is the non-dimensional velocity component along the x-axis and x and y have 
been non-dimensionalized with respect to a. The governing equations then reduce to 

and the boundary conditions become 

The solution of (19) will then define a value go of for [ = 0. By making use of 
the transformation 

(22) 

(23) (19) becomes P = 8 ,  d ’+PQ=o,  

which can be written P+PP = 0. (24) 

P(o) = o ,  P(o) = I ,  F + o  as[+co. (25) 

1 ,f = R & ~ ~ O ) ~ P ( [ ) ,  @ = go a([), 

5 = (R4f  M o ) f  c 

Equation (24) has to be solved subject to the boundary conditions (20), which can 
be written 
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P(6) = 4 2  tanh - . 
C 2 )  

In order to satisfy condition (21) we must have 

Nu g;i = (Ra)h, (27) 

where 

Thus on the axis vertically above the cylinder, 6 = 7t, the temperature distribution 
is given by 

1 (29) 
Tc = go x-t 

T,= 1 -Nu In (x) 

at large distances from the cylinder, 

near the cylinder. 

The necessary conditions that these solutions should join smoothly at some point x, 
are 

gox$ = l-NuIn(x,), 

(30) &,x;f = x;' NU, 

Nu g;t = (Ra)!h. 

From (30) we see that 
(3+ln(x,))Nu= 1,  

which can be written NU = !j(1 -hy,)-', 

where x, = yi3. Eliminating Nu and go from (30) and (32) gives 

y:(l -logy,) = (3h)2 Ra. (33) 

The smallest root, yo, of this transidental equation gives the matching point of the 
two solutions given in (29) and the temperature at that point is given by 

When the Rayleigh number is very small we therefore conclude that 

- 1  
In (Ra) ' 

NUX- x,, - Ra-l, 

and using (32) gives 
1 

In (Ra) * 
NU x -~ 

(35) 

(36) 

The temperature distribution in the inner region can now be obtained from (29) 
and (36) and is given by 

T - l + -  In(') T fixed, Ra+O. 
In (Ra) ' (37) 

Although this expression is based upon pure conduction in the inner region (as is 
evidenced by In ( T ) ) ,  the Ra-dependent coefficient indicates that the inner temperature 
distribution is still dependent upon thermal convection. It should be noted that this 
simple method of joining two solutions makes it highly unlikely that the constants 
in these asymptotic forms are accurately determined. However it does seem reason- 
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able to suppose that the functional dependence on the Rayleigh number is of the 
correct form. 

4. Second-order boundary-layer solution 
It is now convenient to write 

r = 1 +n,  e = (Ra)-t 

where n is the non-dimensional radial distance from the surface of the cylinder. Then 
( l ) ,  (2) and (3) can be written on eliminating the pressure as 

au a 
- + - [ ( l + n ) v ]  = 0 ,  a8 an 

u au 1 av aT 1 aT -+----=- sine+-- cos8, 
l + n  an l+na8  an l + n M  

(39) 

(41) 
1 aT aT -u-+v-= €2 

l + n  a8 an 

The outer expansion of the solution at high Rayleigh number is 

I 
u = UI+€U2+ ..., 

2, = V,+€v,+  ..., 

$=  Y,+€Y,+ .... 
T = T,+sT,+ ..., 

Substituting (42) into (39), (40) and (41) gives, on collecting like powers in e,  

au, a 
-+-[(1 +n)  V,] = 0, a8 an I 

-+--- 2 = - sin 8 + 
l + n  an l + n  a8 an l + n  a8 
u, au, i av a q  

1 a q  a q -  - u,-+ V,- - 0; 
l + n  a8 an 

au, a 
- + - [ ( l + n )  v,] = 0,  
38 an 

(43) 

I 
u"+---- au, i av, 
l + n  an l + n a n  

i a q  i a q  a q  aT 
- u,-+- u -+ v -+ T p  = 0. 
l + n  a8 l + n  ' a n  an 

Equations (43) and (44) have to be solved such that 

T,, U,, V,, T,, U,, &-to as n+ co, all 8 (45) 

and that as n+O the solution matches with an inner solution. 
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For the inner expansion, or boundary-layer approximations, we define a new 
normal coordinate, N = n/s,  and use the expansion 

u = u,+Eu,+ ..., 0) 

I v = €V,+€%,+ . . . , 

@ = €@,+€2+,+ .... 
T = t ,+et,+ ..., 

Substituting (46) into (39), (40) and (41) gives 

I at 
ae 

at at 

au, av -+'= 0, 
a8 aN 

= -sine, at1 
aN aN 

u,'+v at at,=-* set, 
ae 1aN aNa' 

au, a 
ae aN -+-(V,+Nv,) = O ,  

ul+- 3% = sin8+'cose, 
aN 

ae aN aN aNa aN aN' 
at, at, at, at, - a%, 

U , - + U , ~ + W , - + V ~ -  - -+NU,'+-I- 

I 

(47 ) 

We observe that (47) has the same form as the planar boundary-layer equations 
for a circular cylinder embedded in a porous medium, see Merkin (1979). The 
second-order boundary-layer equations (48) include extra terms which take the 
curvature effects into consideration. Equations (47) and (48) have to be solved subject 
to the conditions that 

v1 = 0 ,  t ,  = 1, V ,  = 0, t,  =0,  on N =  0, all 8, (49) 

and that u, v and t match the flow variables U, V and T in an intermediate region. 
Since the velocity and temperature are zero at infinity this suggests 

U, = V, = T, 0, (50) 

and (47) has then to be solved subject to the boundary conditions 

(51) 
w1 = 0, t ,  = 1 on N = 0, all 8, 

u l , t l + O  as N-too, all@. 

The solution to this classical boundary-layer problem was given by Merkin (1979) 
using the similarity transformation 

@l($, N )  = 2 sin (P)h(r]), 
t l (8 ,  N )  = t l(r]) ,  

r] = N cos (F), 
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where f = t,  is defined by the differential equation 

!;+!if; = 0 (534  

which has to be solved subject to the boundary conditions 

f,(O) = 0, f;(o) = 1, f;(rl)+O as q + a .  (53b) 

Ackroyd (1967) solved this problem and found that f,(a) = 1.14277 and 
f;(O) = -0.62756 which results in the local Nusselt number (Nu, = qa/(k(t,-T,)), 
where k is the stagnant thermal conductivity of the saturated porous medium and 
q the local surface heat flux) being given by 

Nu, = Raf[ -f;(O)] cos (p).  (54) 

The second-order outer equations (44) require to be solved subject to the 
appropriate matching conditions as determined by the solution (52). Since T , + O  as 
n+O and n + a  we conclude that T, is identically zero. In  order to solve for the 
velocities we introduce the stream function such that the continuity equation is 
satisfied, namelv 

and !Pa satisfies Laplace's equation 

and the matching condition with the inner solution leads to 

!Pa = 2f1(m) sin (9) on n = 0. (57) 

In this second-order outer solution no mention has yet been made of the boundary 
conditions in 8. Clearly the solution must be symmetrical about 8 = 0, and 0 = 0 is 
a streamline on which !Pa = 0 (and T, will also be identically zero on this line). 
However on the axis 8 = x a plume will develop. At the edge of the plume the 
temperature will be zero and hence the conclusion that T, = 0 certainly satisfies all 
the boundary conditions. However the stream function will have a non-zero value 
at the outer edge of the plume and it is clear from the solution (9) that 

fi+a(Ra&B, (58) 

where f is measured from some origin on the axis 8 = x .  Now the heat flux 0, which 
is a factor in the parameter Ra5, is that generated on the surface of the cylinder. 
Therefore 

where the factor 2 arises because of the contribution from the two boundary layers 
which originate from the generator of the cylinder at 8 = 0. On using the boundary- 
layer solution (52) we find that 

(60) 0 = 4p, c,(T, - T,) Rat f; t ,  dq-. SoW 
Substitution of (60) into (58) gives 

fi+aRa!4k(-f,")iB (61 1 
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In order to find the origin of the plume solution we patch the plume solution to 
the boundary-layer solution (52) by enforcing that on 0 = x ,  r = 1 the stream 
function is continuous. If this corresponds to z = zo then equating (52) and (61) leads 
to 

zo = 1.0569~. (62) 

Clearly there is a collision region near the generator of the cylinder at 8 = x where 
we have not obtained an accurate description of the flow. We must therefore solve 
the Laplace’s equation (56) subject to the boundary conditions 

I Y, = 2f1(00) sin ($9) onn=O, 0 < 8 < x ,  

Y, = 0, 8=0, O<n<co,  

!Pa = 2.24376 (1.0569+n)$, 0 = x, 0 < n < co, 

%+O 
an 

Since the second-order stream function tends to infinity as n tends to infinity we 
again make the following transformation 

Equation (56) becomes 

and boundary conditions (63), 

H = 2f1(m) sin ( p )  o n X = 1 ,  ~ < e < x , )  

H = O  

H = O  

o n X = 0 ,  0 < 8 < x ,  

onB=O, O < X < 1 ,  

H = 2.24376~(1 +0.0569X)t on 8 = x ,  0 < X < 1.) 

The partial differential equation (65) was solved subject to the boundary conditions 
(66) using central differences with a square mesh using 10,20,40 and 80 subdivisions 
and ha extrapolation of the results implemented. 

In order to solve for the second-order inner boundary-layer equations (48) we 
introduce the stream function $, such that 

or in terms of the first-order inner boundary-layer variable 7 
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On making these substitutions into (48) we obtain 

with the boundary conditions 

$2 = t ,  = 0 at 7 = 0, all 8, 

where U2(e, 0) has been obtained numerically from solving the differential equation 
(65) subject to the boundary conditions (66). 

In  order to start the numerical calculations of (69) and (70) we require the starting 
solution at 0 = 0. For this we write 

and substitute into (69) retaining only leading-order terms. This gives 

rn" + fl m' = ( - 1 + r l f i  - I )  f :, 
(73) 

which have to be solved numerically subject to the boundary conditions as deter- 
mined from (71). 

Starting from the solution given in (73) a standard marching procedure was 
employed in order to solve the coupled parabolic partial differentia1 equations (69) 
and (70) subject to the boundary conditions (71). 

5. Finite-Rayleigh-number solution 
In  order to solve the partial differential equations (12) and (13) subject to the 

boundary conditions (14) for finite values of the Rayleigh number a finite-difference 
scheme is employed. A grid system is set up in the region 0 < X < 1 and 0 < 0 < n. 
Constant radial and angular mesh sizes h = 1/M and k = x / N  are used, where M and 
N are integers. We denote all quantities at a typical set of grid points (X,,B,), 
(X,, B,+k), (X,+h,  O,), (XO,8,-k)  and (X, -h ,  0,) by the subscripts 0, 1, 2, 3 and 4 
respectively. Replacing (12) and (13) by central differences everywhere results in a 
set of finite-difference equations which may have associated matrices that are not 
diagonally dominant. If this occurs then it will do so in only a limited region of the 
computational domain and for large values of the Rayleigh number. It must be 
remembered that diagonal dominance is a sufficient condition for convergence of the 
Gauss-Seidel iterative procedure, and also for the successive over-relaxation 
procedure for a well-defined range of the relaxation parameter, but not a necessary 
condition. However if a scheme can be devised in which the associated matrices are 
diagonally dominant then this would ensure convergence. The matrices associated 
with the finite-difference equations obtained by using central differences for the 
second-order derivatives and forward or backward differencing of the fist-order 
derivatives depending on the direction of the flow gives rise to matrices which are 
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diagonally dominant, but a big disadvantage of this method is that the error in the 
hite-difference equations is fist order. 

Allen & Southwell (1955) developed a method of representing the two-dimensional 
Navier-Stokes equations in finite-difference form in which the associated matrices 
are diagonally dominant and the truncation error is only of second order. These and 
related methods have been extended by several authors, e.g. Dennis & Hudson 
(1978), Dennis et al. (1979), to deal with the Navier-Stokes equations in Cartesian 
coordinates. In this paper we extend these methods in order to deal with (13) as the 
solution of (12) for F causes no difficulties for a given G. We therefore write (13) in 
the form 

where 

a2G a@ aG a2G aG 
X2- - $X- + X2p - - jRa X-iG + $I + - + q - = 0,  

ax2 ax ax aea ae 

and split (74) into two components 

aG aG aG 
x2 - -$X-  +pX2 -- G[iRa X-! - 81 = A, ax ax ax 

a2G aG 
-+q-  = -A, 
ae2 ae 

(74) 

(75) 

(77) 

where A is an unknown function of X and 8. Equation (76) is transformed locally 
for X, - h < X < X, + h, 8 = 6, by the substitution 

1 PX 
G = A e-8, s(X, 0,) = p dX, 

2 Jx, 

whilst (77) is transformed locally for X = X,, 8,-k < 8 < B,+k by the substitution 

G = u e-*, s"(X,, 0 )  = - qde. k Jo: (79) 

Substituting the transformations (78) and (79) into (76) and (77) respectively gives 

Evaluating (80) and (81) at the point (X,, O,), replacing all derivatives with central 
differences and eliminating the unknown A, between these two equations gives 

where ye = h2/k2.  
The functions A,, A3, u2 and v4 involve exponential functions and we therefore use 

the method as described by Dennis & Hudson (1978) to eliminate these functions. 
The quantities B and 3 are evaluated using Taylor series and then performing the 
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integrations and the resulting exponential function can then be expanded, giving rise 
to the finite-difference equation 

where terms of second-order accuracy have been retained. The terms underlined are 
the second-order accliracy terms that exist in addition to what would have been 
obtained with a straightforward implementation of central differences. 

The coefficients of the terms involving GI and G, are of the form 1 +B +I# f h/6X0, 
whilst those involving the G, and G4 are of the form ( y2/%) (1 + S++P).  Since the 
minimum value of 1 +8+1# for any value of 8 is t and X, 2 h then 

and 

-(l+&+P)>O, Y2 
z 

(84) 

Further ( iRaXd-6)  is always positive if Ra > i. We therefore conclude that the 
matrix associated with the finite-difference equation (83) is diagonally dominant for 
Ra > i. It should however be remembered that (12) and (13) have to be solved 
simultaneously and although the finite-difference equations may be diagonally 
dominate individually the coupled system may, and probably will, not be diagonally 
dominant. However it would be expected that this method would make the coupled 
associated matrices ‘nearer’ to being diagonally dominant because the method tries 
to deal with the terms that cause the loss of diagonal dominance in the central- 
difference method. Thus it may be expected that when using this method then a larger 
relaxation parameter may be used than would have been possible without the 
underlined terms in (83). 

The smallest value of the Rayleigh number for which numerical calculations were 
performed was Ra = lo-*. For this computation the unknown variables F and G were 
set identically to zero at all mesh points. The order of solution was as follows. Starting 
from this initial solution one complete GaussSeidel iteration was carried out over 
all internal grid points for G and F in that order. The iterative sweep was carried 
out starting at X = A, 8 = k, proceeding along all grid points at constant X, followed 
by all grid points at constant X = 2h starting at 8 = k, etc. The new boundary 
condition on G at each grid point on 8 = 0 and 0 = x was then found. This whole 
sequence of operations is defined as one iteration. The above procedure was repeated 

(85) 
until 

where the summation is over all grid points, the superscripts denote the number of 
iterations and e is an assigned tolerance for which a variation by a value of was 
found to be sufficient. The converged solution at Ra = lo-, was then used for the 
initial guess of the solution at the next value of Ra, say lO- l ,  and these processes 
were repeated up to a value of Ra = 400. 

Gem) F(m) (1 1 - p T 5 1 + 1 1  --I} < € 5  
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In all calculations the method of solution always produced converged results 
without having recourse to under-relaxation. Calculations could in fact have been 
speeded up by the inclusion of an over-relaxation parameter. Even though the above 
theory only suggests that for Ra > $ the matrix associated to the finite-difference 
equations (83) is diagonally dominant it was found that this expanded exponential 
method converges faster than the conventional central-difference technique for all 
values of Ra. 

In order to check the accuracy of this method the solution corresponding to the 
use of central differences everywhere was obtained. This was achieved at  a given 
Rayleigh number by using the converged expanded exponential solution as the first 
estimate of the solution and using a simple modification of the computational 
program used for the expanded exponential solution. It was found that at small 
values of Rayleigh numbers a straightforward Gauseeidel procedure may be 
employed but as the Rayleigh number increases an under-relaxation procedure has 
to be employed with an under-relaxation that may be as small as lo-’ for Ra = 400. 

The expanded exponential method produced converged solutions of the finite- 
difference equations for values of Ra > 400 but the accuracy of these results must 
be questionable because of the lack of information within the boundary layer on the 
cylinder and within the wake. 

6. Results and discussions 
Numerical calculations were performed with h = k/x = &, $, &, & and & and for 

Ra = 1,  10,20,40,70, 100, 150,200,300 and 400. Results were obtained 
for both the expanded exponential method and standard central finite differences. 
It was found that in both cases that h2 extrapolation was appropriate and that for 
a given mesh size the standard central-difference solution was closer to the 
extrapolation solution than the expanded exponential solution. However the 
expanded exponential method does provide an easier and faster means of obtaining 
the converged solution to the central-difference formulation. Although it was found 
that numerical ‘results’ could be obtained for values of Ra 9 400 the extrapolated 
solution WM significantly different (of the order of 10 % or larger) from the solution 
on the finest grid to cause concern. This is because there were insufficient mesh points 
within the boundary layer and plume for the ‘results ’ to be physically significant. 

Table 1 shows the variation of the average Nusselt number, which is defined by 

as the function of the Rayleigh number as obtained from the numerical solution of 
(12) and (13). These results represent the h2 extrapolated values from the central- 
difference formulation using the finest grids. For large Rayleigh numbers the 
boundary-layer solution given by (52) gives 

t’(0) cos ($8) de = 0.3995Rai 

and this is also tabulated in table 1. At  first sight it might be thought that the 
discrepancy between the boundary-layer solution and the numerically obtained 
solution is large. However if we make the assumption that the boundary-layer result 
(87) can be extended in the form 

Nu= 0.3995Rai+a+bRa-i+ ... (88) 
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Boundary -layer 
solution 0.39951 7 lRaf Numerical 

Ra 0.3995171Raf +0.78-1.9Raf solution 

1 
10 
20 
40 
70 

100 
150 
200 
300 
400 

0.3995 
1.2634 
1.7867 
2.5268 
3.3426 
3.9952 
4.8931 
5.6500 
6.9198 
7.9903 

-0.7125 
1 . a 2 6  
2.1418 
3.0064 
3.8955 
4.5852 
5.5179 
6.2957 
7.5901 
8.6753 

0.491 
1.578 
2.183 
3.008 
3.888 
4.582 
5.528 
6.322 
7.603 
8.691 

TABLE 1. The variation of the average Nusselt number as a function of the Rayleigh number 

h R a = 4 0  Ra=300 

dii 3.122 10.058 
a?i 3.036 8.118 
8 3.020 7.818 
&i 3.015 7.724 

Extrapolation 3.008 7.603 

TABLE 2. The variation of the average Nusselt number as a function of mesh size for Rayleigh 
numbers 40 and 300 

4 1  - 
Nu I 

10-8 lo-' 10-1 100 10' 10' 
Ra 

FIGURE 1. The variation of the mean Nusselt number with Rayleigh number. -, numerical 
solution: ---- , boundary-layer solution; - * - - -  , small-Rayleigh-number solution; a ,  A, +, 
experimental results using spheres of diameter 2 , 3  and 4 mm respectively. 

then taking the empirical constants a = 0.78 and b = - 1.9, the results for% are seen, 
in table 1, to give an excellent agreement with the results obtained from the numerical 
method. 

using 
h = k / x  = &, &, & and $ for Ra = 40 and 300. Also shown are the extrapolated values 
To illustrate the extrapolation used, table 2 shows the variation of 
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FIQURE 2. The variation of the local Nusselt number as a function of 8 for various values of the 
Rayleigh number. 

Ra -(3 0.422-0.3Rad 
r-1 

10 
20 
40 
70 
100 
150 
200 
300 
400 

0.321 
0.353 
0.374 
0.386 
0.392 
0.398 
0.401 
0.405 
0.407 

0.327 
0.355 
0.375 
0.386 
0.392 
0.398 
0.401 
0.405 
0.407 

TABLE 3. The variation of the Nusselt number at 8 = 0 as a function of the Rayleigh number 

using the two b e s t  grids and these results illustrate the accuracy to which the 
numerical results are being obtained. In  all the following ha extrapolated results are 
presented. 

The variation of the mean Nusselt number with Rayleigh number is shown in 
figure 1. The boundary-layer solution is presented along with the numerical solution 
and it is seen that the boundary-layer solution gives a reasonable approximation 
even for Rayleigh numbers as small as lo-'. Also shown in the figure is the low- 
Rayleigh-number solution given by (36). It must be remembered that this solution 
is only valid when -In (Ra)  8 1 and therefore its regime of validity is probably not 
within the range of values of Ra shown. Further, as has already been noted, the 
constant8 in the asymptotic solution have not been accurately determined and hence 

' 
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I 

1.5 -I i 
/ 

I 

0 0  
0 45 90 135 180 

0 (degrees) 

FIGURE 3. The variation of -%+ (aQ/aX),,, -0.62756 cos (p)  Rat aa a function of 0 for various 
values of Ra. ----, limiting behaviour aa Ra+ Q) as predicted by the second-order boundary-layer 
solution . 

Ra moo-e 79R4 

40 43.1 31.4 
70 36.4 27.3 

100 26.1 25.0 
160 21.7 22.6 
200 20.4 21 .o 
300 18.5 19.0 
400 17.3 17.7 

flu, 0.32Raf 

0.66 0.80 
0.81 0.93 
0.91 1.01 
1.09 1.12 
1.21 1.20 
1.34 1.33 
1.42 1 .43 

TABLE 4. The variations of 0, and flu, with the Rayleigh number 

this variation of Nusselt number with Rayleigh number only qualitatively shows the 
variation at small Rayleigh numbers. 

Fand et al. (1985) have experimentally investigated the heat transfer from a 
horizontal cylinder embedded in a porous medium consisting of randomly packed 
glass spheres of radii 2,3 and 4 mm in either water or silicone oil at  20 "C. The results 
for water, as presented in table 3 of Fand et al., are given in figure 1. It is seen that 
the experimental results are in reasonable agreement with the numerical results when 
Ra ;5 10 but there is an increasing discrepancy as Ra increases above 10. However 
Fand et al. state that their results can be divided into two subregions, called 'low' 
and ' high ', in each of which the Nusselt number behaves differently. In the low-Ra 
region the flow is Darcian whereas the high-Ra region corresponds to Forchheimer 
flow. Thus it must be concluded that the results of the experiments and numerical 
work in the low-Ra region should agree as the governing equations adequately model 
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- 4  -3  -2 - 1  0 1 2 3 4 

- 4  - 3  -2 - 1  0 1 2 3 4 

-4 - 3  -2 - 1  0 1 2 3 4 

FIQURE ~(u-c). For caption see facing page. 
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-4  - 3  -2 - 1  0 1 2 3 4 

FIGURE 4. The streamlines in the vicinity of the cylinder. (a) Ra = 10, ( b )  40, (c) 200, 
(d) asymptotic solution. 

the flow. However in the high-Ra region when non-Darcian effects are present in the 
experiments it is not too surprising that the theory and experimental results disagree. 

It is clear from the experimental work of Fand et al. (1986) that even at Rayleigh 
numbers as low as order 10 non-Darcian effects become important. This must 
therefore call into question much of the present day research that investigates the 
boundary-layer solutions, Ra B 1, for Darcian flow. Ingham (1987) recognizing this 
situation developed a theory for a non-Darcian free convection boundary layer on 
axisymmetric and two-dimensional bodies of arbitrary shape from which it was 
observed that the average Nusselt number varied as Ra! rather than the Raf predicted 
by the Darcian theory as given by Merkin (1979). Fand et a2. (l986), on the basis of 
experimental results for Ra 5 200, found that the average Nusselt number varied 
from Ra0.894 at low Rayleigh numbers ( 5 O( 10)) to Ra0*372 for high Rayleigh numbers 
(but still less than 200). Thus as the Rayleigh number increases to higher values 
perhaps the power of the Rayleigh-number variation will reduce further towards the 
predicted limit of i. However it is clear that the discrepancy between the theory and 
experimental results arises because the governing model no longer adequately 
describes the experimental configuration. In  order to apply Darcy's law the size of 
the pores must be much smaller than the scale of the bulk flow and inertial and 
thermal lengthscales. 

Figure 2 shows the variation of the local Nusselt number, 

as a function of 8 for various values of the Rayleigh number. Also shown is the 
boundary-layer solution as predicted by Merkin (1979), Nu = 0.62756 cos ($9) Ra?. It 
is seen that as the Rayleigh number increases the general trend is quite consistent 
with the limiting boundary-layer solution. The approach to the boundary-layer 
solution being much clearer the smaller the value of 8, as one would have expected 
since the boundary layer emanates from 8 = 0. 

Table 3 shows the variation of the local Nusselt number, - (i3T/ar),.-l, at 8 = 0 as 
a function of the Rayleigh number. The limiting value as Ra+ co as obtained from 
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-1.5 -1.0 -0.5 0 0.5 1 .o 1.5 2.0 2.5 

-1.5 -1.0 -0.5 0 0.5 1 .o 1.5 2.0 2.5 

1.5 

- 
- 1.5 

RWRE 

I I 1111j I I 

-1.0 -0.5 0 0.5 1 .o 1.5 2.0 2.5 

5. The isotherms in the vicinity of the cylinder (a) Ra = 10, ( b )  40, (c) 200. 
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FIGURE 6. The variation of the non-dimensional temperature along the axis of the plume as a 
function of distance from the centre of the cylinder for various values of the Rayleigh number. 
---- , limiting behaviours as Ra+ 00 aa predicted by the boundary-layer analysis. 

the second-order boundary-layer theory is 0.422 but the approach to this value 
is rather slow. Assuming that the correction to this value is O(Ru-t), i.e. 
- (aT/ar),,, = 0.422 + d  Ra-4, where d is an unknown empirical constant, and if we 
choose d = -0.3, table 3 shows that this gives a good agreement with the numerically 
predicted values. 

The behaviour of the solution near 8 = 180' looks a little complex and therefore 
in figure 3 we plot the difference between the local Nusselt number, as obtained from 
the numerical calculations, and that predicted by the boundary -layer solution, i.e. 
-) + (aG/aX),,, -0.62756 cos (9) Rai, for various values of the Rayleigh number. 
Also shown is the second-order boundary-layer correction. It is clearly seen that as 
the Rayleigh number is increased the second-order boundary-layer solution is being 
approached everywhere except near 8 = 180'. This discrepancy near 8 = 180' is not 
surprising as the first-order boundary-layer solution and the plume solution were only 
patched in this vicinity. In  fact from (69) and (70) we see that both $a and t,  behave 
as ( x - 8 ) - 3  as 8 tends to x .  

In  the theory by Smith & Duck (1977) the collision of the boundary layers is 
accompanied by separation of the flow to  form a recirculating region of dimension 
O(I2u-f). No such region exists in the calculations performed up to Ru = 400 and there 
are no indications to suggest that such a region is being approached. A measure of 
the size of the collision region can be taken to be the angular distance between the 
radii to the uppermost generator of the cylinder and the position of the maximum 
value of -)+ (aG/aX),,,-0.62756 cos(9)Bai, say BC, given in figure 3. The 
variation of BC with Ru is given in table 4 which also shows the function C R u f ,  for 
C = 79. The agreement between these two functions is fairly good for this value of 
C. Another meaaure of the scales appropriate in the collision region is the maximum 
magnitude of -)+ (aG/aX),,, -0.62756 cos (9) Rd, say Rum and the variation of 
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this with Rayleigh number is shown in table 4. Also shown in the table is the variation 
of B Rat for B = 0.32 and the agreement between the two functions is again good. 

powers rather 
than 2 powers but the numerical calculations cannot be performed for sufficiently high 
values of the Rayleigh number to determine accurately these powers and the 
constants B and C .  However the results suggest that the region of interaction of the 
collision of the boundary layers is reasonably consistent with the theory of Smith & 
Duck but no flow reversals are observed. 

The streamline pattern in the vicinity of the cylinder is shown in figure 4 for various 
values of the Rayleigh number and the streamlines are equally spaced at intervals 
of O.5Rai. Also shown is the limiting streamline pattern as Ra+ co as obtained from 
the numerical solution of the governing equation (65) subject to the boundary 
conditions (66). It is observed that as the Rayleigh number increases the asymptotic 
solution appears to be being approached and there is no evidence of a recirculating 
zone being developed near r = 1,  6 = 180'. 

Figure 5 shows the isotherms in the vicinity of the cylinder for various values of 
the Rayleigh number and the lines are equally spaced at intervals of 0.15. It is 
observed that as the Rayleigh number increases the temperature tends to zero 
everywhere except in the vicinity of the cylinder and in the plume, and the width 
of the plume decreases as predicted. 

In the wake we see from (96) that the temperature decays as 2% On using the 
patching of the boundary-layer solution on the cylinder and the wake solution we 
have already found that there is an origin shift as given by (62) and in fact the 
non-dimensional temperature T on the axis of the wake is predicted to be given by 

From the scalings given by Smith & Duck (1977) we might expect 

-1 

T = 0.8391 (++0.0569) 

from the first-order boundary-layer theory. 
The variation of the non-dimensional temperature on the axis of the plume with 

the distance from the centre of the cylinder for various values of the Rayleigh number 
and the boundary-layer prediction as given by (89) is shown in figure 6:. It is observed 
that as the Rayleigh number increases the asymptotic boundary-layer solution is 
being approached a t  large distance from the cylinder. Clearly near the cylinder the 
wake solution has not fully developed and the asymptotic boundary-layer solution 
is not appropriate. 

Part of this work was done whilst one of the authors (D.B.I.) was visiting the 
University of Hawaii. We would like to thank Professor P. Cheng for making this 
visit possible and for his valuable comments on the work. 

REFERENCES 

ACKROYD, J. A. D. 1967 Proc. Camb. Phil. Soc. 63, 871. 
ALLEN, D. N. DE G. & SOUTHWELL, R. V. 1955 &. J .  Mech. Appl. M a t h  8 ,  129. 
BANKS, W. H. H. 1965 &. J .  Mech. Appl. Maths 18,443. 
BANKS, W. H.  H. 1976 Aeta Mech. 24, 273. 
BEAVERS, G. S. & SPARROW, E. M. 1969 Trans. ASME E:  J .  Appl. Mech. 26,711. 
BURNS, P. J. & TIEN, C. L. 1979 Intl J .  Heat Mass Transfer 22, 929. 
CALTAOIRONE, J. P. 1976 J .  Fluid Mech. 76, 337. 



Natural convection about a horizontal cylinder in a porous medium 181 

CHENO, P. 1985 In Proc. Advanced Study Institute on Natural Convection: Fundamentals and 

CHENO, P. & Hsu, C. T. 1984 Trans. A S M E  C: J .  Heat Transfer 106, 143. 
DARCY, H. 1856 Les Fontaines Publiquea de la Ville de Dijon. Dalmont. 
DENNIS, S.  C. R. 1960 Q. J .  Mech. Appl. M a t h  13, 487. 
DENNIS, S. C. R. 1973 Proc. 3rd Intl Conf. on Numerical Methods in Fluid Mechanics, vol. 2 (ed. 

DENNIS, S. C. R. & HUDSON, J. D. 1978 Proc. Zntl Conf. on Numerical Methods in Laminar and 

DENNIS, S. C. R., INQHAM, D. B. & COOK, R. N .  1979 J .  Comp. Phys. 33, 325. 
FAND, R. M., STEINBERQER, T. E. & CHENQ, P. 1986 Intl J .  Heat Mass Transfer 29, 119. 
FENDELL, F. E. 1968 J. Fluid Mech. 34, 163. 
FORCHHEIMER, P. H. 1901 Zeitschrift des Vereines, Deutscher Zng. 45, 1782. 
FORNBERQ, B. 1980 J .  Fluid Mech. 97, 819. 
HARDEE, H. C. 1976 Sandia Laboratories Rep. SAND 76-0075. 
INQHAM, D. B. 1987 Zntl J .  Heat Mass Transfer (to be published). 
KUEHN, T. H. & GOLDSTEIN, R. J. 1980 Intl J .  Heat Mass Transfer 23, 971. 
MAHONY, J. J. 1957 Proc. R. Soc. Lond. A238, 412. 
MERKIN, J. H. 1979 Zntl J .  Heat Mass Transfer 22, 1461. 
MUSKAT, M. 1946 The Fllozu of Homogeneous Fluids Through P o r w  Media. Michigan: 

NIELD, D. A. 1985 Proc. CSZROIDSZR Seminar on Convective Flows in P w w  Media, Wellington, 

NIQAM, S. D. 1954 2. angew Math. Phys. 5, 151. 
ROSCOE, D. F. 1975 J .  Znst. M a t h  Applics 16, 291. 
ROSCOE, D. F. 1976 Intl J .  Numer. Meth. Engng 10, 1299. 
SCHEIDEQQER, A. E. 1974 The Physics of Flow Through Porous Media. University of Toronto Press. 
SMITH, F. T. & DUCK, P. W. 1977 Q. J .  Mech. Appl. M a t b  30, 143. 
SPALDINQ, D. B. 1972 Zntl J .  Numer. Meth. Engng 10, 1299. 
STEWARTSON, K. 1958 In Boundary-Layer Research Symp. Freiburg, p .  59. Springer. 
WOODINQ, R. A. 1963 J .  Fluid Mech. 15, 527. 
YAMAMOTO, K. 1974 J. Phys. Soc. Japan 37, 1164. 
YIH, C.-S. 1965 Dynamics of Non-homogeneous Fluids. Macmillan. 

Applications (ed. S .  Kakac, W. Aung & R. Viskanta), pp. 312-351. Hemisphere. 

H. Cabannes & R. Teman), Lecture Notes in Physics, vol. 19, p. 129. Springer. 

Turbulent Flow, Swanaea, UK, p. 69. London; Pentech. 

J. W. Edwards. 

New Zedand, p. 6. 


